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The experimental determination of the temperature of a metal during its impulsive high- 
rate deformation is made very difficult due to the fact that local sensors cannot be used to 
measure temperature in this case, since they violate the integrity of the specimen. Even if 
they have little effect on such flow parameters as pressure, density, or the velocity field, 
cavities, slits, dielectrics, etc., inside the metal undergoing impulsive deformation usually 
distort the temperature field in an uncontrollable manner. Thus, if the problem is to mea- 
sure temperature in the interior of a specimen, then the specimen itself should act as the 
sensor. When the thermocouple method of measurement is used, such specimen-sensors can be 
obtained if one joins two metals with similar mechanical characteristics but different 
thermoelectric characteristics. Here, the goal is to avoid distortions of the temperature 
field by the interface between the metals. 

In the present study, we describe a thermoelectric method of measuring the temperature 
field during the planar steady-state flow of a metal. An important aspect of the method is 
that it does not introduce distortions into the measured temperature field. In a special 
case, the method can be used to measure the temperature of a weld during explosive welding. 
Zakhavenko [i] and Mikhailov et al. [2] employed the Seebeck effect to measure temperature 
in the explosive-welding regime. However, only the residual temperature of the weld was re- 
corded in [i] and [2]. In [2], a complex probe was introduced into the measurement zone. 
This seriously complicated the interpretation of the resulting data. 

We will examine the collision of two infinite plane jets. One of the jets consists of 
metal 1 (Fig. i), while the other (bimetallic) consists of metals 1 and 2. We will designate 
the free boundaries of the flow as G i (i = i, 2, 3, 4); the boundary dividing the metals will 
be designated as F; the coordinates, reckoned along these boundaries from left to right, are 
gi and 7, respectively. Let a sensor (which we will henceforth conditionally refer to as a 
voltmeter) be attached to points A and B with the coordinates g~ and g2- This sensor mea- 
sures the voltage between the given points V(gl, g2)- We will show that if the distribution 
V(gl, g2) is measured for a fixed gl, then with a known field of flow velocity u the temper- 
ature distribution along F T(7) is determined unambiguously. 

In actual experiment, such a pattern can be obtained as follows (Fig. 2). We use a 
plane explosive charge to project a metallic plate 1 against a stationary bimetallic plate. 
The voltmeter was connected by fixed leads to the middle region of the second plate and the 
edge of the first plate. Assuming the plates are of sufficient dimensions, in the coordinate 
system connected with the stagnation point O the flow of metal away from the edges can be 
considered planar and steady after the elapse of a certain amount of time from the beginning 
of the collision. In this system, the measurement lead rigidly attached to the bottom plate 
and moving together with the metal passes along G 2 from g2 = -~ to g2 = +~. The experimen- 
tally measured dependence of the voltage on the voltmeter on time V(t) gives the distribu- 
tion V(+~, g2)- 

The deformation of the metal establishes a certain distribution of temperature T, while 
the thermoelectric effect produces the current density j and the magnetic H and electric E 
fields. We introduce a Cartesian coordinate system with the z axis perpendicular to the 
plane of the flow. We will assume that in the system connected with the stagnation point, 
the distributions T(x, y), ~(x, y), H(x, y), and E(x, y) satisfy conditions of stationariness 
and two-dimensionality; here, E and ~ will have only x- and y-components, while Hwill have 
only a z-component: H = ezH. 
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Let the section of the measurement lead AD be made of metal 2, and let section BC be 
made of metal i. The voltmeter is connected to points D and C by the lead from metal 2 (see 
Fig. i). We will assume that the temperature at points C and D is equal to the ambient tem- 
perature To. We isolate a closed loop L lying in a certain plane z = const and passing along 
the measurement leads from A to B through the voltmeter. Meanwhile, while passing from B to 
A through the metal, the leads intersect F at a certain point M (counterclockwise is the pos- 
itive direction). The relationship between the measured voltage and the distribution T(~) 
can be obtained as follows. On the one hand, 

D B M A 

L A C B M 

(~ is an element of length along L). On the other hand, 

t h e  p r o b l e m ,  ~ E d l  = O. Th i s  means t h a t  
L 

by virtue of the stationariness of 

D B M A 
v = - f E e, - f E el - E d, - [ E 

A C B M 
(1) 

With allowance for the thermoelectric effect, the expression for Ohm's law for a particle of 
metal i moving with the velocity u has the form 

i. i 
E = - - - 7 - V t  t + ~ j + s ~ V T - ~ o [ u H ] , i = l ,  2. (z) 

Here, e is the electron charge; B is the chemical potential; o i and s i are the conductivity 
and absolute thermoelectric coefficient of the metal i; ~0 is the magnetic constant. We will 
henceforth assume that o i are constant, while s i depend only on temperature. Since the re- 
sistance of the voltmeter is much greater than the resistance of the region occupied by the 
metal, the current flowing through the measurement leads is negligibly small and there is no 
magnetic field outside the metal. Then, inserting (2) into (i), we obtain 

D B M A 

t i 

A C B M 

TM M A A 

- -  (s~ - -  s , )  d r  - -  ~ j a q - -  -~2 j d l +  i.to[uH]dl 
T o B 

(3) 

(T M is the temperature at the point M). 

Since the integral of 7D over the closed contour is equal to zero, and since V~ equals 
zero on the section from D to C (this section consists solely of metal at the constant tem- 
perature To), then the sum of the first four terms in (3) is equal to zero. In the plane 
case, it follows from the equation j = rot H that 

j d l  = - - ( O H / O n ) d l  ( 4 )  

( n ! i s  an o u t e r  u n i t  no rmal  t o  d l ) .  
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Since u has only x- and y-components and since }I has only z components, then 

[uH ]dl = - -Hun dl. (5)  

Considering (4-5), we change (3)'to the form 

TM M A 

V =  -- (s l - s ,2 )  d T +  ~o ~toO 1 
T o 

The physical significance of this expression can be explained as follows: the first term 
describes the direct effect of the temperature gradient along the path of integration, while 
the second and third terms describe the change in the magnetic flux across L. This change 
is a reflection of two processes: the gradient terms give the diffusion flux of the field 
over the curve BA, while the terms with Hu describe the transport of the magnetic field 
through BA by the moving metal. 

Equation (6) makes it possible to use the measured voltage to determine the temperature 
T M at any point of the boundary F if we know H(x, y). The distribution of the magnetic field 
in the metal can be found from the solution of the following two problems. Having subjected 
Eq. (2) to the operation rot and taking into account that rot E = 0, rot VD = 0, rot(siVT) = 
0, rot j = -AH, rot [uH] = --div (Hu), we find that in each metal the magnetic field satisfies 
the equation 

(l/~oai)AH -- div(Hu) = 0, i = 1, 2. (7)  

E q u a t i o n  (7)  needs  to  be s o l v e d  w i t h  two boundary  c o n d i t i o n s .  For t h e  r e g i o n  o c c u p i e d  by 
metal 2, H = 0 on G 2. This follows from the finiteness of the component j which is tangen- 
tial to the external boundary and from the absence of a magnetic field outside the metal. 
We find the second boundary condition after having calculated 8V/Sg 2. For this, we take N 
on G=, N having the coordinate g2 + sine dg 2. We isolate the contour Ll, coinciding on the 
sections DC, CB, and BM with L and passing from M to N and from N to D along certain curves 
lying within L. Following (6), we write 

T3I _tf 

V(gl,  g 2 + d g 2 ) = - -  , ; ( s ~ - - s ~ ) d T §  
T o 

-'~ ( 8 )  

M 

It follows from (7) that 

A N M A  

Then from (6) and (8) we obtain 

N j(' ) V (g~, g2 + dg2) -- V (g~, g2) = ,tto ~ VH -- H u n  dl. 
A 

Since H = 0 on G=, we can use the latter to obtain the second boundary condition needed to 
find H(x, y) in the region occupied by metal 2; 

~)lt a2 aV 
~,~ = o2 og~" (9) 

Generally speaking, we are dealing with an ill-conditioned problem when we attempt to solve 
Eq. (7) for the region occupied by metal 2 with boundary conditions on G z H = 0 and (9). 
However, assuming that the sought solution is smooth and using regularization methods, it 
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is possible to obtain a solution which is continuously dependent on the error of the boundary 
conditions [3]. Having then solved the problem, we find H(x, y) in the region occupied by 
metal 2 and, in particular we find the distribution of the magnetic field along F H(y). By 
virtue of the continuity of the magnetic field on F, the resulting H(7) serves as the bound- 
ary condition to determine H(x, y) in the region occupied by metal i. For this, we need to 
solve (7) with i = i and the second boundary condition - which is analogous to the first con- 
dition used in the calculation of H in the region occupied by metal 2: H = 0 on GI, Ga, G4. 
This problem is well conditioned. After we calculate H(x, y) throughout the region of metal 
flow, we can use (6) to find T M. Moving point M along F and solving (6) for each position M, 
we obtain the temperature distribution along the interface of the metals T(7). If the me- 
chanical characteristics of the metals in the above-described flow are similar and if the 
boundary F does not introduce significant distortions in the velocity and temperature fields, 
then by determining T(~) for different positions of the interface in the same flow configura- 
tion we can construct T(x, y) for the entire region. In a particular case, we can proceed 
in this manner to measure the temperature of a weld in the explosive-welding regime. To do 
this, the bottom plate should consist entirely of metal 2, rather than being bimetallic. 

We make the following observation. In the numerical solution of boundary-value prob- 
lems, the region in which H(x, y) is calculated is cut off a finite distance from the stag- 
nation point upstream and downstream. If the boundaries obtained from this procedure are 
located sufficiently far from the stagnation point, it can be assumed that H = 0. In fact, 
Eqs. (7) show that the magnetic field diffuses through the metal (first term) and is simul- 
taneously entrained by the moving medium (second term). It follows from (7) that the below 
expression is valid for any closed contour lying entirely within the metal and not contain- 
ing the boundary F 

t - -  H u )  = 0 ,  i = ~ ( - ~ ( V  H ndl t, 2. (10)  

This means that there are no magnetic-field sources for Eqs. (7) within the uniform region 
of the metal. If we isolate a contour containing the section PQ of the boundary F (see Fig. 
i), then it is not hard to show that 

Q 

~ (~o~ vH -- Hu) n dl = -- j' ( t~to(~ 1 On.OH + __!~o(~2t oneOH ) d ? ( l l )  
P 

(n I and n 2 are unit vectors perpendicular to r and directed inward from the regions occupied 
by metals i and 2, respectively). Taking into account the continuity of the tangential com- 
ponent of E with the crossing of the interface and using (2) and (4), we find that on F 

OT OH t on (s~--s2) Of" (] .2)  

Comparing (ii) and (12), we see that the sources of the magnetic field for (7) are 
found on the interface where there is a temperature gradient along F. It can be determined 
that the magnetic flux created in i sec per unit length of F will be J = (s I - s2)BT/B 7. The 
temperature gradient is concentrated mainly in the region around the stagnation point, where 
the metal undergoes intensive deformation. The magnetic field created in this region dif- 
fuses primarily toward the external boundaries of the flow, where H = 0, and is simultaneously 
entrained by the moving metal. As follows from (7), the characteristic times over which the 
field reaches the free boundaries ~I ~ ~0o1612 and ~2 ~ p0o2522 (51 and 62 are the thick- 
nesses of metals i and 2). The thermal conductivity of the metals leads to a decrease in 
aT/By with increasing distance from the stagnation point. At a sufficient distance from 
this point, it can be assumed that aT/ay = 0 and that there are no magnetic-field sources. 
The field entrained by the moving metal diffuses to the external boundaries and disappears. 
The condition H = 0 will be satisfied for certain when 

/~Oa 2 UOa2 ) 
I gl [, l g21 >> max , - - ,  uJ1, uJ2 , X 1 ~2 
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where u0 is the velocity of the metal at infinity; a is the characteristic dimension of the 
region in which the metal undergoes deformation; • and ~ are the diffusivities of the met- 
als. If there is a large difference in the conductivities of the materials, then this con- 
dition will be too rigid - since the velocity of the magnetic field as it leaves the metal 
is determined by the material with the lesser conductivity. 

The present method, requiring measurement of temperature with an arbitrary velocity 
field u(x, y) entails a fairly large amount of numerical calculation. This is because it 
is necessary to solve the boundary-value problem twice in order to find H(x, y). Tihe method 
can be simplified appreciably if the velocity field can be described in the model of an ideal 
incompressible fluid. As was shown in [4, 5], by comparing the empirically determined pres- 
sure field in copper during explosive welding and the results calculated from the model of 
an ideal incompressible fluid, the latter can be used as a first approximation to describe 
metal flow under such conditions. We will examine the case in which the densities of the 
metal are identical. Then the flow will be continuous throughout the entire region. We 
introduce the velocity potential ~ and the stream function ~: 

O~/Ox = u~, O~/Oy = u v, O~/Ox = - - u  v, O ~ y  = u~. 

On the  p lane  of  the  complex p o t e n t i a l  r = ~ + i~ ,  the  r eg ion  occupied by meta l  2 becomes a 
s t r a i g h t  band ~(G2) 5 Imr ~ ~(F) [~(G2) and ~(F) a re  va lues  o f  the  s t ream f u n c t i o n  on G2 and 
F, r e s p e c t i v e l y ] .  In o rder  to  avoid  d i f f e r e n t i a t i n g  the  e m p i r i c a l l y  measured q u a n t i t y  V 
when we o b t a i n  boundary c o n d i t i o n  (9 ) ,  r a t h e r  than  seeking  H(x, y) we a t t empt  to  f i n d  the  
auxiliary function F2(~, ~), defined in the region occupied by metal 2 

- -  o c  

(13) 

Inserting (13) into (7) and integrating, we obtain 

O2F2/a~ 2 + O2Ffa~ ~ - -  ~to~2aF2/O~ =/ (~ )  (14) 

[ f (~ )  i s  an a r b i t r a r y  f u n c t i o n ] .  At ~ § ~, the  magnet ic  f i e l d  d i s appea r s  and,  thus,, 3F2/8~ 
and 82F2/8~ 2 approach zero. We will isolate a contour formed by two arbitrary streamlines 

= ~z and ~ = ~2 and closed by the sections ~ = const at ~ + • Since there is no convec- 
tive transport of the magnetic field across the streamlines (un = 0), then we find from (i0) 
and (13) that 

a2F2 I a i oil o ,  ~ ~- o-~ ~ d~ = O. 

This means that f(~) ~ 0. Since F 2 is determined to within a constant, it can be assumed 
that F2( % ~(G2)) = 0. It follows from (9) and (12) that on G 2 

aF2/a~: ~- -~s:V(g~(q~, qO, g2(~, ~'0). (15) 
The problem of finding F2(T, ~) is solved by the source method. The solution of Eq. (14) 
for a linear source of power q located at the origin of the coordinates in the plane (~, ~) 
has the form [6] 

•  �9 '--T--)Ko 2 

(K0 is the zeroth-order Bessel function of the imaginary argument, this function being of 
the second kind). 

We will place sources with the density p(~) on F and place sources with the density 
p(T) symmetrically relative to G 2. In this case, 

i p (%) - %).] F2 (% ~) = ~ exp [ ~n~176 (q)2 • 
- - o o  

(16) 
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Due to the symmetry of the location of the sources relative to G2, the boundary condition 
Fz(~ , ~) = 0 at ~ = ~(G 2) is satisfied automatically. Differentiating (16) with respect to 

and taking (15) into account, to determine the function p(~) we obtain a Fredholm equation 
of the first kind: 

- ~  2~ V ( ~ -  %)" + [r (r) - , ( G ) P  • 

X E l ( -  ~ V ( ( ~ -  (po)2 ~f - [ , ( r ) -  ,(G2)]2)dqDo ~-----(J,W (gl(q), ,(~2)),  

g~ (~P, * (G))). 

Using regularization methods, we can take this equation and find 0(~)- We can then use 
(16) to find F=(~, ~). We introduce the function FI(~, ~), determined by the relations 

OF I OF I = ; OH 
o~ = H ( % , ) ,  o, -~-dg.  (17) 

--oo 

for the region occupied by metal i. In accordance with (14), we obtain 

O~F1/O~2 + a~F1/O~ 2 --  ~OOlaF1/0T ~ 0. (18)  

Since H = 0 on GI, Gs, and G~, the function Fx = const on these boundaries and can be set 
equal to zero. Due to the continuity of the magnetic field on F, it follows from (13) and 
(17) that 

F,(r , ( r ) )  = F2(% ,(F)) + const. (19)  

We find from (17) that 8FI/8 ~ ~ 0 at ~ ~-~, while since F z = 0 on the external boundaries, 
then Fz(~, ~(F)) + 0 at ~ + -~. Similarly, F2( ~, ~(F)) ~ 0 at ~ + -~ so that const = 0 in 
(19). Thus, the value of F2(~, ~(F)) serves as the closing boundary condition (19) to find 
FI[~F, ~). The problem of solving Eq. (18) with the above-indicated boundary conditions is 
well conditioned. 

After determining FI and F2, in principle we could use (13) and (17) to obtain H, while 
(6) could be used to find the temperature. However, it is more convenient to take another 
approach. In fact, integrating (12) along F and considering (13), (17), we see that the tem- 
perature at an arbitrary point M can be found from the relation 

TM 

; ( S , - - s 2 ) d T = - ~ .  lira OF,~(~(M),,) ' lira aF,(~(M),*) 

T O 
(20) 

The method is made even simpler when o I >> o 2 . In this case, we can ignore the second term 
in the right side of (20)~ so that it is no longer necessary to find Fx(~, ~). This situa- 
tion is realized, for example, when metal 2 is constantan and metal 1 is copper (ol/o 2 = 30). 
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TABLE 1 

~, deg 
vc, m/sec 

T 

Copper-constantan 

 ooof= = t  oop = = 
t340 [ 840 . . . .  

i 250 . . . .  

t500 

t3oo i - I 
470 I -- 

Manganin-constantan 

-- -- I I030 -- [ -- 

-- -- [ 400 -- I -- 
p 

t340 { = -- t i0000 I -- ] ---- 

t480 -- 

2200 

2700 

980 

940 
280 --F =F 

1200 
550 

I T 98~ -- -- 350 

In another special case, when the temperature of the weld is measured in the explosive- 
welding regime with a symmetrical collision of metals having the same conductivity (for exmn- 
ple, manganin and constantan), it also suffices to determine just F2(~, ~). Then, due to 
the symmetry of the problem, FI(~, $) = F2(~, 25(F) - ~) and 

TM 
,J OF 2 (r (M), 4) 

( s I - -  s2) d T  = ~ l im a~ 
T o 

We used the above-described method to measure weld temperature in the explosive welding 
of copper with constantan and manganin with constantan. The experimental scheme employed is 
depicted in Fig. 2. All of the plates were 2 mm thick. Figure 3 shows a typical oscillogram 
of the time dependence of voltage. It was obtained in the welding of copper with constantan 
in the following regime: collision angle y = 18~ velocity of the contact point v c = i000 
m/sec. The sweep rate was 20 Dsec/cell, while sensitivity was 20 MV/cell. 

Up to the moment the top plate came into contact with the bottom plate, the voltage re- 
corded by the oscillograph was equal to zero. It increased sharply at the moment of contact. 
The slight dip of the front of V(t) before the plateau is due to the finiteness of the time 
of diffusion of the magnetic field from the weld to the free surface of the plate. As long 
as the measurement cable (point A) was connected far from the stagnation point O, all of the 
magnetic fields generated in the weld propagated to the free boundaries of the flow to the 
right of point A within the loop formed by the measurement leads. In this case, the recorded 
voltage was constant. As A approached O, some of the magnetic flux began to propagate to 
the left of A and voltage decreased. When A was located far to the right of O, the magnetic- 
field sources near A disappeared and the entire field propagated outside the measurement 
loop. The voltage ceased to depend on time (i.e., the position of point A relative to O) 
and entered a new plateau corresponding to the residual temperature of the weld. 

Figure 4 shows the dependence of temperature in the weld on the distance to the stagna- 
tion point. This dependence was determined from analysis of the oscillograms. Table 1 shows 
maximum (top line) and residual (bottom line) temperatures in the weld for certain welding 
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regimes in the cases of the welding of copper with constantan and manganin with constantan. 
The total temperature-measurement error due to the simplifying assumptions we made, the use 
of regularization methods, and the voltage-measurement error was estimated to be • 

The authors express their thanks to V. M. Titov for his useful comments on the study. 
They are also indebted to V. N. Zelenii and M. A. Fedotenko for their help in conducting the 
experiments. 
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